Free Edge Lengths in Plane Graphs
نویسندگان
چکیده
منابع مشابه
Drawing outerplanar graphs using three edge lengths
It is shown that for any outerplanar graph G there is a one to one mapping of the vertices of G to the plane, so that the number of distinct distances between pairs of connected vertices is at most three. This settles a problem of Carmi, Dujmović, Morin and Wood. The proof combines (elementary) geometric, combinatorial, algebraic and probabilistic arguments.
متن کاملFlat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths
When can a plane graph with prescribed edge lengths and prescribed angles (from among {0, 180◦, 360◦}) be folded flat to lie in an infinitesimally thick line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountainvalley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two...
متن کاملOn the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملRainbow faces in edge-colored plane graphs
A face of an edge colored plane graph is called rainbow if all its edges receive distinct colors. The maximum number of colors used in an edge coloring of a connected plane graph G with no rainbow face is called the edge-rainbowness of G. In this paper we prove that the edge-rainbowness of G equals to the maximum number of edges of a connected bridge face factor H of G, where a bridge face fact...
متن کاملThe edge-face choosability of plane graphs
A plane graph G is said to be k-edge-face choosable if, for every list L of colors satisfying |L(x)| = k for every edge and face x , there exists a coloring which assigns to each edge and each face a color from its list so that any adjacent or incident elements receive different colors. We prove that every plane graph G with maximum degree ∆(G) is (∆(G)+ 3)-edge-face choosable. © 2004 Elsevier ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2015
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-015-9704-z